skip to main content


Search for: All records

Creators/Authors contains: "Griffin, Kevin L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Most tundra carbon flux modeling relies on leaf area index (LAI), generally estimated from measurements of canopy greenness using the normalized difference vegetation index (NDVI), to estimate the direction and magnitude of fluxes. However, due to the relative sparseness and low stature of tundra canopies, such models do not explicitly consider the influence of variation in tundra canopy structure on carbon flux estimates. Structure from motion (SFM), a photogrammetric method for deriving three-dimensional (3D) structure from digital imagery, is a non-destructive method for estimating both fine-scale canopy structure and LAI. To understand how variation in 3D canopy structure affects ecosystem carbon fluxes in Arctic tundra, we adapted an existing NDVI-based tundra carbon flux model to include variation in SFM-derived canopy structure and its interaction with incoming sunlight to cast shadows on canopies. Our study system consisted of replicate plots of dry heath tundra that had been subjected to three herbivore exclosure treatments (an exclosure-free control [CT], large mammals exclosure), and a large and small mammal exclosure [ExLS]), providing the range of 3D canopy structures employed in our study. We found that foliage within the more structurally complex surface of CT canopies received significantly less light over the course of the day than canopies within both exclosure treatments. This was especially during morning and evening hours, and was reflected in modeled rates of net ecosystem exchange (NEE) and gross primary productivity (GPP). We found that in the ExLS treatment, SFM-derived estimates of GPP were significantly lower and NEE significantly higher than those based on LAI alone. Our results demonstrate that the structure of even simple tundra vegetation canopies can have significant impacts on tundra carbon fluxes and thus need to be accounted for.

     
    more » « less
  2. Abstract

    Whole‐ecosystem interactions and feedbacks constrain ecosystem responses to environmental change. The effects of these constraints on responses to climate trends and extreme weather events have been well studied. Here we examine how these constraints respond to changes in day‐to‐day weather variability without changing the long‐term mean weather. Although environmental variability is recognized as a critical factor affecting ecological function, the effects of climate change on day‐to‐day weather variability and the resultant impacts on ecosystem function are still poorly understood. Changes in weather variability can alter the mean rates of individual ecological processes because many processes respond non‐linearly to environmental drivers. We assessed how these individual‐process responses to changes in day‐to‐day weather variability interact with one another at an ecosystem level. We examine responses of arctic tundra to changes in weather variability using stochastic simulations of daily temperature, precipitation, and light to drive a biogeochemical model. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates in our model. However, responses of some processes (e.g., respiration) were inconsistent with expectations because ecosystem feedbacks can moderate, or even reverse, direct process responses to weather variability. More weather variability led to greater carbon losses from land to atmosphere; less variability led to higher carbon sequestration on land. The magnitude of modeled ecosystem response to weather variability was comparable to that predicted for the effects of climate mean trends by the end of the century.

     
    more » « less
  3. Arctic Treeline is the transition from the boreal forest to the treeless tundra and may be determined by growing season temperatures. The physiological mechanisms involved in determining the relationship between the physical and biological environment and the location of treeline are not fully understood. In Northern Alaska, we studied the relationship between temperature and leaf respiration in 36 white spruce ( Picea glauca ) trees, sampling both the upper and lower canopy, to test two research hypotheses. The first hypothesis is that upper canopy leaves, which are more directly coupled to the atmosphere, will experience more challenging environmental conditions and thus have higher respiration rates to facilitate metabolic function. The second hypothesis is that saplings [stems that are 5–10cm DBH (diameter at breast height)] will have higher respiration rates than trees (stems ≥10cm DBH) since saplings represent the transition from seedlings growing in the more favorable aerodynamic boundary layer, to trees which are fully coupled to the atmosphere but of sufficient size to persist. Respiration did not change with canopy position, however respiration at 25°C was 42% higher in saplings compared to trees (3.43±0.19 vs. 2.41±0.14μmolm −2 s −1 ). Furthermore, there were significant differences in the temperature response of respiration, and seedlings reached their maximum respiration rates at 59°C, more than two degrees higher than trees. Our results demonstrate that the respiratory characteristics of white spruce saplings at treeline impose a significant carbon cost that may contribute to their lack of perseverance beyond treeline. In the absence of thermal acclimation, the rate of leaf respiration could increase by 57% by the end of the century, posing further challenges to the ecology of this massive ecotone. 
    more » « less
  4. Foliar chemistry values were obtained from two important native tree species (white oak (Quercus alba L.) and red maple (Acer rubrum L.)) across urban and reference forest sites of three major cities in the eastern United States during summer 2015 (New York, NY (NYC); Philadelphia, PA; and Baltimore, MD). Trees were selected from secondary growth oak-hickory forests found in New York, NY; Philadelphia, PA; and Baltimore, MD, as well as at reference forest sites outside each metropolitan area. In all three metropolitan areas, urban forest patches and references forest sites were selected based on the presence of red maple and white oak canopy dominant trees in patches of at least 1.5 hectares with slopes less than 25%, and well-drained soils of similar soil series within each metropolitan area. Within each city, several forest patches were selected to capture the variation in forest patch site conditions across an individual city. All reference sites were located in protected areas outside of the city and within intermix wildland-urban interface landscapes, in order to target similar contexts of surrounding land use and population density (Martinuzzi et al. 2015). Several reference sites were selected for each city, located within the same protected area considered representative of rural forests of the region. White oaks were at least 38.1 cm diameter at breast height (DBH), red maples were at least 25.4 cm DBH, and all trees were dominant or co-dominant canopy trees. The trees had no major trunk cavities and had crown vigor scores of 1 or 2 (less than 25% overall canopy damage; Pontius & Hallett 2014). From early July to early August 2015, sun leaves were collected from the periphery of the crown of each tree with either a shotgun or slingshot for subsequent analysis to determine differences in foliar chemistry across cities and urban vs. reference forest site types. The data were used to invstigate whether differences in native tree physiology occur between urban and reference forest patches, and whether those differences are site- and species-specific. A complete analysis of these data can be found in: Sonti, NF. 2019. Ecophysiological and social functions of urban forest patches. Ph.D. dissertation. University of Maryland, College Park, MD. 166 p. References: Martinuzzi S, Stewart SI, Helmers DP, Mockrin MH, Hammer RB, Radeloff VC. 2015. The 2010 wildland-urban interface of the conterminous United States. Research Map NRS-8. US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA. Pontius J, Hallett R. 2014. Comprehensive methods for earlier detection and monitoring of forest decline. Forest Science 60(6): 1156-1163. 
    more » « less
  5. We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. 
    more » « less
  6. Abstract

    In arctic tundra, large and small mammalian herbivores have substantial impacts on the vegetation community and consequently can affect the magnitude of carbon cycling. However, herbivores are often absent from modern carbon cycle models, partly because relatively few field studies focus on herbivore impacts on carbon cycling. Our objectives were to quantify the impact of 21 years of large herbivore and large and small herbivore exclusion on carbon cycling during peak growing season in a dry heath tundra community. When herbivores were excluded, we observed a significantly greater leaf area index as well as greater vascular plant abundance. While we did not observe significant differences in deciduous dwarf shrub abundance across treatments, evergreen dwarf shrub abundance was greater where large and small herbivores were excluded. Both foliose and fruticose lichen abundance were higher in the large herbivore, but not the small and large herbivore exclosures. Net ecosystem exchange (NEE) likewise indicated the highest carbon uptake in the exclosure treatments and lowest uptake in the control (CT), suggesting that herbivory decreased the capacity of dry heath tundra to take up carbon. Moreover, our calculated NEE for average light and temperature conditions for July 2017, when our measurements were taken, indicated that the tundra was a carbon source in CT, but was a carbon sink in both exclosure treatments, indicating removal of grazing pressure can change the carbon balance of dry heath tundra. Collectively, these findings suggest that herbivore absence can lead to changes in plant community structure of dry heath tundra that in turn can increase its capacity to take up carbon.

     
    more » « less
  7. Abstract

    Understanding arctic ecosystem function is key to understanding future global carbon (C) and nutrient cycling processes. However, small mammal herbivores can have effects on ecosystems as structure builders and these effects have been underrepresented in the understanding of arctic systems.

    We examined the impact of small mammal structures (hay piles, runways, latrines) on soils and plants in three arctic tundra regions near Utqiaġvik, Toolik Lake, and Nome, Alaska. Our aims were to (1) examine how vole and lemming structures influence plant and soil nutrient pools and microbial processes, (2) determine if structure effects were similar across tundra system types, and (3) understand how changes in the abundance and cover of these structures during different phases of small mammal multi‐annual population cycles might influence biogeochemical cycling.

    In general, small mammal structures increased nitrogen (N) availability in soils, although effects varied by study region. Across study regions, hay piles were relatively uncommon (lowest % cover) but increased multiple soil N and P pools, C‐ and N‐acquiring enzyme activities, and leaf phosphorus (P) concentrations, with the specific nutrient variables and size of the effects varying by study region. Latrines had the second highest cover and influenced multiple C, N and P pools, but their effects were mainly observed within a single region. Lastly, runways had the highest % cover of all activity types but increased the fewest number of soil nutrient variables.

    We conclude that by influencing soil nutrient availability and biogeochemical cycling, small mammal structures can influence bottom‐up regulation of ecosystem function, particularly during the high phase of the small mammal population cycle. Future changes in these population cycles might alter the role of small mammals in the Arctic and have lasting effects on system processes.

    Read the freePlain Language Summaryfor this article on the Journal blog

     
    more » « less
  8. Abstract

    We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how “explicitly representing grazers” vs. “having grazer effects implicitly aggregated in with other biogeochemical processes in the model” alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer‐mediated processes can respond differently to changes in climate compared with the processes with which they are typically aggregated. We use small‐mammal grazers in a tundra as an example and find that the typical three‐to‐four‐year cycling frequency is too fast for the effects of cycle peaks and troughs to be fully manifested in the ecosystem biogeochemistry. We conclude that implicitly aggregating the effects of small‐mammal grazers with other processes results in an underestimation of ecosystem response to climate change, relative to estimations in which the grazer effects are explicitly represented. The magnitude of this underestimation increases with grazer density. We therefore recommend that grazing effects be incorporated explicitly when applying models of ecosystem response to global change.

     
    more » « less
  9. Abstract

    White spruce (Picea glauca) spans a massive range, yet the variability in respiratory physiology and related implications for tree carbon balance at the extremes of this distribution remain as enigmas. Working at both the most northern and southern extents of the distribution range more than 5000 km apart, we measured the short‐term temperature response of dark respiration (R/T) at upper and lower canopy positions.R/Tcurves were fit to both polynomial and thermodynamic models so that model parameters could be compared among locations, canopy positions, and with previously published data. Respiration measured at 25°C (R25) was 68% lower at the southern location than at the northern location, resulting in a significantly lower intercept inR/Tresponse in temperate trees. Only at the southern location did upper canopy leaves have a steeper temperature response than lower canopy leaves, likely reflecting canopy gradients in light. At the northern range limit respiration is nearly twice that of the averageR25reported in a global leaf respiration database. We predict that without significant thermal acclimation, respiration will increase with projected end‐of‐the‐century warming and will likely constrain the future range limits of this important boreal species.

     
    more » « less